4 research outputs found

    Clinical-evolutional particularities of the cryoglobulinemic vasculitis in the case of a patient diagnosed with hepatitis C virus in the predialitic phase

    Get PDF
    Hepatitis C virus (HCV) represents a fundamental issue for public health, with long term evolution and the gradual appearance of several complications and associated pathologies. One of these pathologies is represented by cryoglobulinemic vasculitis, a disorder characterized by the appearance in the patient’s serum of the cryoglobulins, which typically precipitate at temperatures below normal body temperature (37°C) and dissolve again if the serum is heated. Here, we describe the case of a patient diagnosed with HCV that, during the evolution of the hepatic disease, developed a form of cryoglobulinemic vasculitis. The connection between the vasculitis and the hepatic disorder was revealed following treatment with interferon, with the temporary remission of both pathologies and subsequent relapse at the end of the 12 months of treatment, the patient becoming a non-responder. The particularity of the case is represented by both the severity of the vasculitic disease from its onset and the deterioration of renal function up to the predialitic phase, a situation not typical of the evolution of cryoglobulinemia. Taking into account the hepatic disorder, the inevitable evolution towards cirrhosis, and the risk of developing the hepatocellular carcinoma, close monitoring is necessary

    Real-time sono-elastography in the diagnosis of diffuse liver diseases

    No full text
    AIM: To analyze whether computer-enhanced dynamic analysis of elastography movies is able to better characterize and differentiate between different degrees of liver fibrosis

    Deep Learning Algorithms in the Automatic Segmentation of Liver Lesions in Ultrasound Investigations

    No full text
    Background: The ultrasound is one of the most used medical imaging investigations worldwide. It is non-invasive and effective in assessing liver tumors or other types of parenchymal changes. Methods: The aim of the study was to build a deep learning model for image segmentation in ultrasound video investigations. The dataset used in the study was provided by the University of Medicine and Pharmacy Craiova, Romania and contained 50 video examinations from 49 patients. The mean age of the patients in the cohort was 69.57. Regarding presence of a subjacent liver disease, 36.73% had liver cirrhosis and 16.32% had chronic viral hepatitis (5 patients: chronic hepatitis C and 3 patients: chronic hepatitis B). Frames were extracted and cropped from each examination and an expert gastroenterologist labelled the lesions in each frame. After labelling, the labels were exported as binary images. A deep learning segmentation model (U-Net) was trained with focal Tversky loss as a loss function. Two models were obtained with two different sets of parameters for the loss function. The performance metrics observed were intersection over union and recall and precision. Results: Analyzing the intersection over union metric, the first segmentation model obtained performed better compared to the second model: 0.8392 (model 1) vs. 0.7990 (model 2). The inference time for both models was between 32.15 milliseconds and 77.59 milliseconds. Conclusions: Two segmentation models were obtained in the study. The models performed similarly during training and validation. However, one model was trained to focus on hard-to-predict labels. The proposed segmentation models can represent a first step in automatically extracting time-intensity curves from CEUS examinations
    corecore